日韩无码专区,亚洲成av人片在www色猫咪,精品久久人妻av中文字幕,久久亚洲av午夜福利精品一区

銷售咨詢熱線:
19357158997

產(chǎn)品分類

Product Category
技術(shù)文章
首頁(yè) > 技術(shù)中心 > 評(píng)估納米壓痕在軟生物材料(腎臟、肝臟、脾臟和子宮)硬度測(cè)量中的應(yīng)用

評(píng)估納米壓痕在軟生物材料(腎臟、肝臟、脾臟和子宮)硬度測(cè)量中的應(yīng)用

 更新時(shí)間:2023-05-05 點(diǎn)擊量:1102

題目:評(píng)估納米壓痕在軟生物材料硬度測(cè)量中的應(yīng)用:腎臟、肝臟、脾臟和子宮 |科學(xué)報(bào)告 

抽象

具有高空間分辨率和力靈敏度的納米壓痕技術(shù)廣泛用于測(cè)量硬質(zhì)生物材料和組織的機(jī)械性能。然而,其分析軟生物材料和器官的可靠性尚未經(jīng)過(guò)測(cè)試。在這里,我們?cè)u(píng)估了納米壓痕測(cè)量軟生物標(biāo)本的被動(dòng)力學(xué)性能的效用。從C57BL / 6 N小鼠中收獲腎臟,肝臟,脾臟和子宮樣品。我們使用Bland-Altman圖,類內(nèi)相關(guān)系數(shù)(ICC)和受試者內(nèi)變異系數(shù)(COV)評(píng)估了生物標(biāo)本和水凝膠對(duì)照中的測(cè)試-復(fù)測(cè)試重復(fù)性。結(jié)果使用Hertzian,JKR和Oliver & Pherr模型計(jì)算得出。與水凝膠類似,所有生物標(biāo)本的Bland-Altman圖在剛度測(cè)試和復(fù)試檢查中表現(xiàn)出良好的可靠性。在所有三種模型中,ICC均大于0.8,COV小于15%。在腎臟,肝臟,脾臟和子宮中,ICC僅在Hertzian模型中始終大于0.8,而在JKR和Oliver & Pherr模型中則不然。同樣,僅在赫茲模型中腎臟、肝臟、脾臟和子宮的COV始終小于15%,而在其他模型中則不然。我們得出結(jié)論,納米壓痕技術(shù)在檢測(cè)腎臟,肝臟,脾臟和子宮的硬度方面是可行的。赫茲模型是提供所研究生物標(biāo)本離體器官剛度可靠結(jié)果的方法。

材料和方法

動(dòng)物

從5周,10周,20周和30周齡C57BL / 6 N小鼠解剖腎臟,肝臟和脾臟。對(duì)于腎臟和脾臟,使用每種性別和年齡的2只小鼠。對(duì)于肝臟,使用每種性別和年齡的2至4只小鼠。對(duì)于子宮,使用了八只小鼠,所有這些小鼠都在100天左右。這些實(shí)驗(yàn)得到了當(dāng)?shù)貏?dòng)物護(hù)理委員會(huì)(LAGeSo,德國(guó)柏林)和馬克斯·德?tīng)柌紖慰朔肿俞t(yī)學(xué)中心(MDC)動(dòng)物福利官員的批準(zhǔn)(編號(hào)X 9011/19)。

基質(zhì)水凝膠

具有不同剛度的水凝膠(1 kPa,2 kPa,4 kPa,8 kPa,12 kPa和25 kPa)從Softwell,Matrigen,Matrigen Life Technologies,Brea,CA購(gòu)買,用于質(zhì)量控制(1 kPa,2 kPa,4 kPa,8 kPa,12 kPa和25 kPa;N = 1 到 3)。

組織制備

左腎和右腎分別從側(cè)中線分為兩個(gè)圖)。3A,四個(gè)部分全部縮進(jìn)。肝臟樣本取自左葉(圖)。四A). 整個(gè)收獲脾臟用于實(shí)驗(yàn)(圖)。4選擇并打開(kāi)左子宮角(圖)。5答,B)。所有器官都經(jīng)過(guò)清潔,去除器官表面可見(jiàn)的血液,脂肪,膜或血管,但避免損壞它們的實(shí)質(zhì)。為了獲得平坦的表面,我們將所有樣品粘貼到直徑為6厘米的培養(yǎng)皿底部,并用蟲(chóng)膠(Sigma)使外表面平整。將組織樣品浸入PBS(NaCl 4.0 M,KCl 137.0 M,Na2高原油40.01 米,千米2采購(gòu)訂單40.0018米;酸堿度 7.4)。

納米壓痕

為了確定彈性特性,我們使用了位移控制的納米壓痕儀(Piuma;光學(xué)11,荷蘭阿姆斯特丹)。該設(shè)備采用套圈頂部懸臂探頭32,33施加負(fù)載并使用基于光纖的讀數(shù)同時(shí)測(cè)量壓痕深度(圖)。1A). 我們使用半徑為 50 μm 且懸臂剛度為 0.5 N/m 的球形探頭。在每一系列實(shí)驗(yàn)之前,通過(guò)壓入剛性表面并將懸臂彎曲等同于探頭位移來(lái)進(jìn)行懸臂彎曲校準(zhǔn)。之后,將探針聚焦在組織表面的適當(dāng)區(qū)域(圖。1B、3A、4A、5A、6B)。在25×5 μm網(wǎng)格掃描中,將每個(gè)凝膠壓痕5次(800×800個(gè)基質(zhì)),測(cè)量間隔距離為200 μm。腎臟、肝臟和脾臟樣品在9××3μm網(wǎng)格掃描中用3個(gè)壓痕(200個(gè)基質(zhì))壓進(jìn)(圖。200B、3B、4B)。在子宮中,分別在子宮的近端、中部和遠(yuǎn)端測(cè)試了 5 × 4 μm 網(wǎng)格中具有 100 個(gè)單壓痕的三個(gè)壓痕矩陣(圖)。100B,C)。應(yīng)用的壓痕方案由在6 nm壓痕深度下4 s的加載階段(保持8000秒)和卸載階段4 s組成。所有掃描都進(jìn)行了兩次,以分析可靠性。左右腎四個(gè)部分所有結(jié)果的平均值表示為腎臟彈性。凝膠、肝臟和脾臟的硬度表示為每次掃描中所有結(jié)果的平均值。三次掃描結(jié)果的平均值作為子宮硬度。所有單個(gè)壓痕值均由 Piuma Dataviewer 版本 2.2 (Piuma;光學(xué)11,荷蘭阿姆斯特丹)。

討論

Piuma納米壓痕技術(shù)已廣泛應(yīng)用于硬動(dòng)物器官的生物材料剛度研究,例如骨骼25、耳內(nèi)、鼻翼和鼻外隔細(xì)胞和細(xì)胞外基質(zhì) (ECM) 水平24,26,在膝關(guān)節(jié)22,在關(guān)節(jié)軟骨中23.其他例子是人類供體角膜27、纖維化腸組織30、胰腺無(wú)細(xì)胞支架31、軟板28尤其是鈣化的動(dòng)脈瘤腹主動(dòng)脈29.該技術(shù)在測(cè)量軟生物材料,特別是離體器官的剛度方面的可行性和可靠性尚不清楚。與硬質(zhì)生物材料相比,軟質(zhì)生物材料的某些性能,如粘彈性和附著力,更容易出現(xiàn)納米壓痕的偏差。我們的研究是第一個(gè)使用這項(xiàng)技術(shù)在體外測(cè)試軟生物器官的剛度,特別是來(lái)自小鼠的剛度,這些器官?gòu)V泛用于模擬人類和動(dòng)物疾病。我們應(yīng)用了Piuma納米壓痕技術(shù),該技術(shù)易于使用,并利用特定的探針來(lái)測(cè)量楊氏模量,以匹配組織的特定樣品特性42,43,44 .不同的組織具有不同的機(jī)械性能,因此,應(yīng)在具有某些特殊特征的組織中應(yīng)用不同的方案45.由于在實(shí)驗(yàn)前無(wú)法判斷被測(cè)樣品的特征,因此我們分析了加載和卸載零件的彈性行為檢測(cè)。除了系統(tǒng)的運(yùn)行和測(cè)量策略的開(kāi)發(fā)外,組織的制備和固定也非常重要。不規(guī)則的組織無(wú)法測(cè)試,因?yàn)樵撛O(shè)備只能識(shí)別平坦穩(wěn)定的表面,并且剛度的計(jì)算會(huì)受到樣品狀況的影響。例如,如果被測(cè)表面是斜率(補(bǔ)充1,圖1A),則接觸區(qū)域不會(huì)被探頭縮進(jìn),這意味著失去深度和力可能導(dǎo)致剛度測(cè)量錯(cuò)誤。球狀器官(補(bǔ)充1圖1B)也是不可測(cè)試的,因?yàn)樗跍y(cè)量過(guò)程中不能穩(wěn)定。此外,由于組織邊緣的障礙物,該技術(shù)不可能測(cè)試下沉的表面(補(bǔ)充1圖1C)。塊狀表面(補(bǔ)充1圖1D)不僅會(huì)影響測(cè)量結(jié)果的準(zhǔn)確性,還會(huì)導(dǎo)致探頭懸臂因卡住而損壞。一起,需要以適當(dāng)?shù)男螤詈痛笮≈苽淇蓽y(cè)試的被測(cè)組織。我們確實(shí)克服了納米壓痕技術(shù)的可行性和可靠性的這些可能限制,該技術(shù)通過(guò)使用以適當(dāng)方式解剖的孤立腎臟,肝臟,脾臟和子宮來(lái)測(cè)量軟器官硬度。我們通過(guò)對(duì)該技術(shù)與Matrigen水凝膠的比較研究證實(shí)了結(jié)果的可行性和可靠性。在給定剛度,穩(wěn)定形狀,適當(dāng)厚度和平坦表面的Matrigen水凝膠作為質(zhì)量控制,盡管它們給定的剛度不被認(rèn)為是黃金標(biāo)準(zhǔn)。然而,我們的Bland-Altman圖、ICC和COV證明了所用凝膠的良好可靠性。因此,我們得出結(jié)論,納米壓痕技術(shù)在我們的實(shí)驗(yàn)室環(huán)境和這種材料上運(yùn)行良好且可靠。

接下來(lái),我們測(cè)試了該技術(shù)在體外測(cè)量四個(gè)器官的硬度,即腎臟,肝臟,脾臟和子宮。盡管Bland-Altman圖沒(méi)有給我們提供許多不合格的結(jié)果,但不同模型中四種器官硬度的結(jié)果的可靠性只能通過(guò)比較ICC和COV來(lái)驗(yàn)證。在四個(gè)器官中,所有赫茲模型的結(jié)果都遵循ICC的量化標(biāo)準(zhǔn),COVs顯示出可靠的結(jié)果。JKR或Oliver & Pharr模型的結(jié)果并不總是符合高質(zhì)量標(biāo)準(zhǔn)。觀察到差異的原因可能取決于樣品在卸載狀態(tài)下的粘性差異。

例如,在JKR模型中,即使在相同的樣品上,一些斑點(diǎn)是粘性的,而一些單個(gè)壓痕顯示沒(méi)有粘附,如圖所示。1E,這將增加測(cè)試和重新測(cè)試之間的差異。因此,我們的結(jié)果表明,在強(qiáng)制壓痕下,最好使用赫茲模型計(jì)算所研究的四個(gè)器官的硬度。值得注意的是,該模型已被其他研究人員使用,他們?cè)谘芯恐欣昧思{米壓痕技術(shù)。27,28,29 ,而其他研究沒(méi)有報(bào)告使用的模型30,31.此外,將子宮與其他三個(gè)器官的結(jié)果進(jìn)行比較,我們發(fā)現(xiàn)即使在赫茲模式下,根據(jù)Eff計(jì)算硬度的情況下子宮的COV值為11.6893%,在根據(jù)E計(jì)算剛度的情況下,子宮的COV值為14.1841%,非常接近閾值,遠(yuǎn)高于赫茲模型中其他三個(gè)器官的COV值。這表明重復(fù)測(cè)量子宮之間的差異大于肝臟,腎臟和脾臟的變異性。一個(gè)可能的原因是子宮比其他三個(gè)器官更小更薄,在實(shí)驗(yàn)過(guò)程中,我們發(fā)現(xiàn)更小更薄的器官子宮的邊緣更容易卷起,導(dǎo)致類似情況如補(bǔ)充1圖1B所示,預(yù)計(jì)會(huì)影響測(cè)量結(jié)果。因此,該方法在體外較大較厚的軟器官中的可靠性較好。

此外,納米壓痕的成功應(yīng)用在很大程度上取決于材料特征,例如被測(cè)組織的形狀;測(cè)量具有復(fù)雜粗糙表面的生物材料往往很困難。當(dāng)一個(gè)組織被手工轉(zhuǎn)化為可以測(cè)試的材料時(shí),不知道它的彈性是否保持與原始器官的彈性相同的性質(zhì),以及器官的部分彈性是否可以代表其整體彈性。因此,對(duì)于某些器官研究,體內(nèi)測(cè)試可能是提供器官機(jī)械性能詳細(xì)見(jiàn)解的更好甚至的選擇。然而,體內(nèi)測(cè)試在測(cè)量過(guò)程中可能會(huì)受到其他因素的干擾和影響,因此納米壓痕器可以直接與目標(biāo)材料接觸進(jìn)行測(cè)量可能是一個(gè)優(yōu)勢(shì)。目前,該技術(shù)的應(yīng)用存在較多的局限性和不足。例如,其有效性和真實(shí)性仍需進(jìn)一步驗(yàn)證,生物材料納米壓痕的標(biāo)準(zhǔn)化程序尚未建立。因此,我們不能肯定它是否會(huì)成為軟器官和組織機(jī)械生物學(xué)和生物力學(xué)研究中的工具。然而,隨著這項(xiàng)技術(shù)的研發(fā)越來(lái)越深入,我們預(yù)計(jì)它將有很大的機(jī)會(huì)應(yīng)用于軟器官生理學(xué)和病理學(xué)等多個(gè)領(lǐng)域的研究。

結(jié)論

Piuma納米壓痕技術(shù)是一種簡(jiǎn)單可行的離體器官硬度測(cè)試方法,如腎臟,肝臟,脾臟和子宮。在表面無(wú)序的小而薄的組織中,我們預(yù)計(jì)結(jié)果的變化會(huì)增加。赫茲模型是體外測(cè)量軟器官和生物材料的被動(dòng)力學(xué)性能的方法。JKR和Oliver & Pharr模型沒(méi)有提供可靠的結(jié)果。

原文鏈接:評(píng)估納米壓痕在軟生物材料硬度測(cè)量中的應(yīng)用:腎臟、肝臟、脾臟和子宮 |科學(xué)報(bào)告 


638115315808276326711.jpg

Optics11成立于2011年,是阿姆斯特丹自由大學(xué)(VU)的衍生組織。從那時(shí)起,這家初創(chuàng)公司的收入和員工持續(xù)增長(zhǎng),成為荷蘭發(fā)展最快的公司之一,并具有國(guó)際影響力。Optics11 Life提供功能強(qiáng)大的新型納米壓痕儀,與傳統(tǒng)的同類產(chǎn)品相比,使用方便、功能多樣、堅(jiān)固耐用。主要用于測(cè)量復(fù)雜、不規(guī)則的生物材料,如單細(xì)胞、組織、水凝膠和涂層的機(jī)械性能。

Piuma Nanoindenter

生物組織、軟物質(zhì)材料力學(xué)性能測(cè)試的新方法

638115304139229018177.jpg

Piuma是功能強(qiáng)大的臺(tái)式儀器,可探索水凝膠、生理組織和生物工程材料的微觀機(jī)械特性。表征尺度從宏觀直至細(xì)胞。專為分析測(cè)試軟材料而設(shè)計(jì),測(cè)量復(fù)雜和不規(guī)則材料在生理?xiàng)l件下的力學(xué)性能。杭州軒轅科技有限公司

主要優(yōu)勢(shì)

● 內(nèi)置攝像鏡頭,方便實(shí)時(shí)觀察樣品臺(tái)

● 實(shí)時(shí)分析計(jì)算測(cè)量結(jié)果,原始數(shù)據(jù)并將以文本文件存儲(chǔ),方便任何時(shí)候?qū)隓ataviewer軟件進(jìn)行復(fù)雜處理

● 探針經(jīng)過(guò)預(yù)先校準(zhǔn),即插即用。對(duì)于時(shí)間敏感的樣品確保了快速測(cè)量

● 光纖干涉MEMS技術(shù)能夠以無(wú)損的方式測(cè)量即使是最軟的材料,并保證分辨率。同時(shí)探針可以重復(fù)使用Piuma軒轅納米壓痕儀Piuma軒轅納米壓痕儀

                                           

技術(shù)參數(shù)

+
模量測(cè)試范圍

5 Pa - 1 GPa

探頭懸臂剛度0.025 - 200 N/m
探頭尺寸(半徑)

3 - 250 μm

最大壓痕深度100 μm
傳感器最大容量200
測(cè)試環(huán)境air, liquid (buffer/medium)
粗調(diào)行程

X*Y:12×12 mm          Z:12 mm

加載模式

Displacement / Load* / Indentation*
測(cè)試類型

準(zhǔn)靜態(tài)(單點(diǎn),矩陣)

蠕變,應(yīng)力松弛

DMA動(dòng)態(tài)掃描 (E', E'', tanδ)

動(dòng)態(tài)掃描頻率*
0.1 - 10 Hz
內(nèi)置擬合模型Young's Modulus (Hertz / Oliver-Pharr / JKR)
*為可選升級(jí)配置









Fiber-On-Top 探頭

新型光纖干涉式懸臂梁探頭,利用干涉儀來(lái)監(jiān)測(cè)懸臂梁形變。638115393727713280157.jpg


相較于原子力顯微鏡或傳統(tǒng)納米壓痕儀

創(chuàng)新型光纖探頭,彌補(bǔ)了傳統(tǒng)納米壓痕儀無(wú)法測(cè)試軟物質(zhì)的問(wèn)題,也解決了AFM在力學(xué)測(cè)試中的波動(dòng)大,操作困難、制樣嚴(yán)苛等常見(jiàn)缺陷。


● 背景噪音低:激光干涉儀抗干擾強(qiáng)于AFM反射光路

● 制樣更簡(jiǎn)單:對(duì)樣品的粗糙度寬容度高于AFM

● 剛度選擇更準(zhǔn)確:平行懸臂梁結(jié)構(gòu)有利于準(zhǔn)確判別壓痕深度與壓電陶瓷位移比例關(guān)系,便于選擇合適剛度探頭來(lái)保證彈性形變關(guān)系的穩(wěn)定性,進(jìn)而獲得重復(fù)率更高、準(zhǔn)確性更好的數(shù)據(jù)



內(nèi)置分析軟件

638004237288879575913.jpg

● 借助功能強(qiáng)大而易于操作的軟件,用戶可以自由控制壓痕程序(載荷、位移等)。自動(dòng)處理曲線的流程,可以獲得數(shù)據(jù)和結(jié)果的快速分析


● 原始參數(shù)完整txt導(dǎo)出,便于后續(xù)復(fù)雜處理的需要


● 利用Hertz接觸模型從加載部分計(jì)算彈性模量,與常用的Oliver&Pharr方法相比,更為適合生物組織和軟物質(zhì)材料特性



視頻介紹


近期文獻(xiàn)



年  份期  刊題  目
2022Advanced Functional MaterialsEngineering Vascular Self-Assembly by Controlled 3D-Printed Cell Placement
2022BiomaterialsHydrogels derived from decellularized liver tissue support the growth and differentiation of cholangiocyte organoids
2021Biofabrication3D bioprinting of tissue units with mesenchymal stem cells, retaining their proliferative and differentiating potential, in polyphosphate-containing bio-ink
2021nature communicationsJanus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration
2020Environmental Science & TechnologyEffect of Nonphosphorus Corrosion Inhibitors on Biofilm Pore Structure and Mechanical Properties
2020Acta BiomaterialiaA multilayer micromechanical elastic modulus measuring method in ex vivo human aneurysmal abdominal aortas